R/f_latentIV.R
latentIV.Rd
Fits linear models with one endogenous regressor and no additional explanatory variables using the latent instrumental variable approach presented in Ebbes, P., Wedel, M., Böckenholt, U., and Steerneman, A. G. M. (2005). This is a statistical technique to address the endogeneity problem where no external instrumental variables are needed. The important assumption of the model is that the latent variables are discrete with at least two groups with different means and the structural error is normally distributed.
A symbolic description of the model to be fitted. Of class "formula".
A data.frame containing the data of all parts specified in the formula parameter.
A named vector containing a set of parameters to use in the first optimization iteration. The names have to correspond exactly to the names of the components specified in the formula parameter. If not provided, a linear model is fitted to derive them.
A named list of arguments which are passed to optimx
. This allows users to tweak optimization settings to their liking.
Show details about the running of the function.
An object of classes rendo.latent.IV
and rendo.base
is returned which is a list and contains the following components:
The formula given to specify the fitted model.
The terms object used for model fitting.
The model.frame used for model fitting.
A named vector of all coefficients resulting from model fitting.
a vector specifying which coefficients are from the model. For internal usage.
A named vector with the initial set of parameters used to optimize the log-likelihood function.
The result object returned by the function optimx
after optimizing the log-likelihood function.
A named, symmetric matrix giving an estimate of the Hessian at the found solution.
A diagonal matrix needed when deriving the vcov to apply the delta method on theta5 which was transformed during the LL optimization.
Fitted values at the found optimal solution.
The residuals at the found optimal solution.
The function summary
can be used to obtain and print a summary of the results.
The generic accessor functions coefficients
, fitted.values
, residuals
, vcov
, confint
, logLik
, AIC
, BIC
, case.names
, and nobs
are available.
Let's consider the model:
where \(t = 1,..,T\) indexes either time or cross-sectional units, Yt is the dependent variable,
Pt is a k x 1
continuous, endogenous regressor,
εt is a structural error term with mean zero
and E(ε2)=σε2,
\(\alpha\) and β0 are model parameters.
Z;t is a l x 1
vector of instruments,
and νt is a random error with mean zero and
E(ν2)=σν2.
The endogeneity problem arises from the correlation of \(P\) and εt
through E(εν)=σεν
latentIV
considers Zt' to be a latent, discrete, exogenous variable with an unknown number of groups \(m\) and \(\pi\) is a vector of group means.
It is assumed that \(Z\) is independent of the error terms \(\epsilon\) and \(\nu\) and that it has at least two groups with different means.
The structural and random errors are considered normally distributed with mean zero and variance-covariance matrix \(\Sigma\):
The identification of the model lies in the assumption of the non-normality of Pt, the discreteness of the unobserved instruments and the existence of at least two groups with different means.
The method has been implemented such that the latent variable has two groups. Ebbes et al.(2005) show in a Monte Carlo experiment that even if the true number of the categories of the instrument is larger than two, estimates are approximately consistent. Besides, overfitting in terms of the number of groups/categories reduces the degrees of freedom and leads to efficiency loss. For a model with additional explanatory variables a Bayesian approach is needed, since in a frequentist approach identification issues appear.
Identification of the parameters relies on the distributional assumptions of the latent instruments as well as that of the endogenous regressor Pt. Specifically, the endogenous regressor should have a non-normal distribution while the unobserved instruments, \(Z\), should be discrete and have at least two groups with different means Ebbes, Wedel, and Böckenholt (2009). A continuous distribution for the instruments leads to an unidentified model, while a normal distribution of the endogenous regressor gives rise to inefficient estimates.
Additional parameters used during model fitting and printed in summary
are:
The instrumental variables \(Z\) are assumed to be divided into two groups. pi1
represents the estimated group mean of the first group.
The estimated group mean of the second group of the instrumental variables \(Z\).
The probability of being in the first group of the instruments.
The variance, σε2
The covariance, σεν
The variance, σν2
Ebbes, P., Wedel,M., Böckenholt, U., and Steerneman, A. G. M. (2005). 'Solving and Testing for Regressor-Error (in)Dependence When no Instrumental Variables are Available: With New Evidence for the Effect of Education on Income'. Quantitative Marketing and Economics, 3:365–392.
Ebbes P., Wedel M., Böckenholt U. (2009). “Frugal IV Alternatives to Identify the Parameter for an Endogenous Regressor.” Journal of Applied Econometrics, 24(3), 446–468.
# \donttest{
data("dataLatentIV")
# function call without any initial parameter values
l <- latentIV(y ~ P, data = dataLatentIV)
#> No start parameters were given. The linear model y ~ P is fitted to derive them.
#> The start parameters c((Intercept)=2.628, P=-0.955, pi1=7.627, pi2=11.784, theta5=0.5, theta6=1, theta7=0.5, theta8=1) are used for optimization.
summary(l)
#>
#> Call:
#> latentIV(formula = y ~ P, data = dataLatentIV)
#>
#> Coefficients:
#> Estimate Std. Error z-score Pr(>|z|)
#> (Intercept) 3.32351 0.37383 8.89 <2e-16 ***
#> P -1.04580 0.04894 -21.37 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Further parameters estimated during model fitting:
#> pi1 pi2 theta5 theta6 theta7 theta8
#> 3.7652 8.5354 0.1905 1.1277 1.5754 13.7507
#> (see help file for details)
#>
#> Initial parameter values:
#> (Intercept)=2.6275 P=-0.9545 pi1=7.6273 pi2=11.7843 theta5=0.5
#> theta6=1 theta7=0.5 theta8=1
#>
#> The value of the log-likelihood function: 10627.18
#> AIC: -21238.35 , BIC: -21191.76
#> KKT1: TRUE KKT2: TRUE Optimx Convergence Code: 0
# function call with initial parameter values given by the user
l1 <- latentIV(y ~ P, start.params = c("(Intercept)"=2.5, P=-0.5),
data = dataLatentIV)
#> The start parameters c((Intercept)=2.5, P=-0.5, pi1=7.627, pi2=11.784, theta5=0.5, theta6=1, theta7=0.5, theta8=1) are used for optimization.
summary(l1)
#>
#> Call:
#> latentIV(formula = y ~ P, data = dataLatentIV, start.params = c(`(Intercept)` = 2.5,
#> P = -0.5))
#>
#> Coefficients:
#> Estimate Std. Error z-score Pr(>|z|)
#> (Intercept) 3.01775 0.40997 7.361 2.47e-13 ***
#> P -1.00585 0.05371 -18.726 < 2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Further parameters estimated during model fitting:
#> pi1 pi2 theta5 theta6 theta7 theta8
#> 3.2569 8.3458 0.1417 1.0283 0.8863 14.0949
#> (see help file for details)
#>
#> Initial parameter values:
#> (Intercept)=2.5 P=-0.5 pi1=7.6273 pi2=11.7843 theta5=0.5
#> theta6=1 theta7=0.5 theta8=1
#>
#> The value of the log-likelihood function: 10626.73
#> AIC: -21237.46 , BIC: -21190.87
#> KKT1: FALSE KKT2: TRUE Optimx Convergence Code: 0
# use own optimization settings (see optimx())
# set maximum number of iterations to 50'000
l2 <- latentIV(y ~ P, optimx.args = list(itnmax = 50000),
data = dataLatentIV)
#> No start parameters were given. The linear model y ~ P is fitted to derive them.
#> The start parameters c((Intercept)=2.628, P=-0.955, pi1=7.627, pi2=11.784, theta5=0.5, theta6=1, theta7=0.5, theta8=1) are used for optimization.
# print detailed tracing information on progress
l3 <- latentIV(y ~ P, optimx.args = list(control = list(trace = 6)),
data = dataLatentIV)
#> No start parameters were given. The linear model y ~ P is fitted to derive them.
#> The start parameters c((Intercept)=2.628, P=-0.955, pi1=7.627, pi2=11.784, theta5=0.5, theta6=1, theta7=0.5, theta8=1) are used for optimization.
#> fn is fn1
#> Looking for method = Nelder-Mead
#> Methods to be used:[1] "Nelder-Mead"
#> Function has 8 arguments
#> Analytic gradient not made available.
#> Analytic Hessian not made available.
#> Scale check -- log parameter ratio= 1.372334 log bounds ratio= NA
#> optcfg:$fname
#> [1] "fn1"
#>
#> $npar
#> [1] 8
#>
#> $ctrl
#> $ctrl$follow.on
#> [1] FALSE
#>
#> $ctrl$save.failures
#> [1] TRUE
#>
#> $ctrl$trace
#> [1] 6
#>
#> $ctrl$kkt
#> [1] TRUE
#>
#> $ctrl$all.methods
#> [1] FALSE
#>
#> $ctrl$starttests
#> [1] TRUE
#>
#> $ctrl$maximize
#> [1] FALSE
#>
#> $ctrl$dowarn
#> [1] TRUE
#>
#> $ctrl$usenumDeriv
#> [1] FALSE
#>
#> $ctrl$kkttol
#> [1] 0.001
#>
#> $ctrl$kkt2tol
#> [1] 1e-06
#>
#> $ctrl$badval
#> [1] 8.988466e+307
#>
#> $ctrl$scaletol
#> [1] 3
#>
#> $ctrl$have.bounds
#> [1] FALSE
#>
#>
#> $usenumDeriv
#> [1] FALSE
#>
#> $ufn
#> function (par)
#> fn(par, ...)
#> <bytecode: 0x55627696cd18>
#> <environment: 0x55626f865908>
#>
#> $have.bounds
#> [1] FALSE
#>
#> $method
#> [1] "Nelder-Mead"
#>
#> Method: Nelder-Mead
#> Nelder-Mead direct search function minimizer
#> function value for initial parameters = 25166.340666
#> Scaled convergence tolerance is 0.000375008
#> Stepsize computed as 1.178432
#> BUILD 9 99999999999999996863366107917975552.000000 15117.921096
#> LO-REDUCTION 11 188968.490520 15117.921096
#> LO-REDUCTION 13 40767.922605 15117.921096
#> HI-REDUCTION 15 32202.843462 15117.921096
#> LO-REDUCTION 17 25286.228659 15117.921096
#> LO-REDUCTION 19 25166.340666 15117.921096
#> LO-REDUCTION 21 25025.809571 15117.921096
#> LO-REDUCTION 23 24765.258130 15117.921096
#> LO-REDUCTION 25 24749.299831 15117.921096
#> EXTENSION 27 23763.304905 13289.307985
#> LO-REDUCTION 29 22689.840233 13289.307985
#> LO-REDUCTION 31 18748.209813 13289.307985
#> LO-REDUCTION 33 17064.949547 13289.307985
#> EXTENSION 35 15949.704321 12617.403054
#> EXTENSION 37 15622.268823 12459.472104
#> LO-REDUCTION 39 15599.127400 12459.472104
#> LO-REDUCTION 41 15117.921096 12459.472104
#> REFLECTION 43 14515.890215 12173.848725
#> REFLECTION 45 14095.141973 11852.510184
#> LO-REDUCTION 47 13318.637529 11852.510184
#> HI-REDUCTION 49 13289.307985 11852.510184
#> LO-REDUCTION 51 12680.455512 11852.510184
#> LO-REDUCTION 53 12617.403054 11852.510184
#> LO-REDUCTION 55 12562.675931 11832.131827
#> LO-REDUCTION 57 12459.472104 11832.131827
#> REFLECTION 59 12186.287407 11680.397304
#> HI-REDUCTION 61 12173.848725 11680.397304
#> LO-REDUCTION 63 11966.737907 11680.178949
#> LO-REDUCTION 65 11924.068935 11680.178949
#> LO-REDUCTION 67 11900.865026 11680.178949
#> REFLECTION 69 11852.510184 11678.040110
#> REFLECTION 71 11840.556176 11634.168568
#> REFLECTION 73 11834.455510 11617.208967
#> LO-REDUCTION 75 11832.131827 11611.984653
#> LO-REDUCTION 77 11740.635088 11611.984653
#> EXTENSION 79 11687.982331 11391.769027
#> LO-REDUCTION 81 11680.397304 11391.769027
#> LO-REDUCTION 83 11680.178949 11391.769027
#> LO-REDUCTION 85 11678.040110 11391.769027
#> LO-REDUCTION 87 11660.985085 11391.769027
#> LO-REDUCTION 89 11634.168568 11391.769027
#> EXTENSION 91 11617.208967 11347.770092
#> LO-REDUCTION 93 11611.984653 11347.770092
#> EXTENSION 95 11535.227479 11169.595975
#> LO-REDUCTION 97 11515.933673 11169.595975
#> LO-REDUCTION 99 11491.243202 11169.595975
#> LO-REDUCTION 101 11477.374129 11169.595975
#> LO-REDUCTION 103 11436.389556 11169.595975
#> LO-REDUCTION 105 11401.552409 11169.595975
#> LO-REDUCTION 107 11391.769027 11169.595975
#> LO-REDUCTION 109 11347.770092 11169.595975
#> LO-REDUCTION 111 11281.108176 11160.339850
#> REFLECTION 113 11255.801268 11136.567810
#> LO-REDUCTION 115 11247.482041 11136.567810
#> LO-REDUCTION 117 11199.982234 11136.567810
#> LO-REDUCTION 119 11192.659182 11136.567810
#> HI-REDUCTION 121 11190.855303 11136.567810
#> REFLECTION 123 11172.529098 11120.441993
#> HI-REDUCTION 125 11169.595975 11120.441993
#> LO-REDUCTION 127 11160.339850 11120.441993
#> LO-REDUCTION 129 11158.662827 11120.441993
#> REFLECTION 131 11154.644746 11112.450306
#> REFLECTION 133 11153.050009 11110.959229
#> EXTENSION 135 11146.887191 11067.813800
#> LO-REDUCTION 137 11137.234238 11067.813800
#> LO-REDUCTION 139 11136.567810 11067.813800
#> LO-REDUCTION 141 11126.161822 11067.813800
#> EXTENSION 143 11122.641238 11048.881404
#> LO-REDUCTION 145 11120.441993 11048.881404
#> EXTENSION 147 11112.450306 11022.266441
#> LO-REDUCTION 149 11110.959229 11022.266441
#> EXTENSION 151 11096.257911 10987.533310
#> LO-REDUCTION 153 11090.752816 10987.533310
#> LO-REDUCTION 155 11084.237571 10987.533310
#> LO-REDUCTION 157 11074.504137 10987.533310
#> EXTENSION 159 11067.813800 10948.860089
#> EXTENSION 161 11048.881404 10880.366179
#> LO-REDUCTION 163 11045.084523 10880.366179
#> LO-REDUCTION 165 11022.266441 10880.366179
#> LO-REDUCTION 167 11006.951360 10880.366179
#> LO-REDUCTION 169 11005.515754 10880.366179
#> LO-REDUCTION 171 10990.570205 10880.366179
#> EXTENSION 173 10987.533310 10848.335611
#> LO-REDUCTION 175 10948.860089 10848.335611
#> EXTENSION 177 10944.462527 10807.847832
#> LO-REDUCTION 179 10912.389163 10807.847832
#> EXTENSION 181 10907.118651 10778.654925
#> LO-REDUCTION 183 10906.411147 10778.654925
#> EXTENSION 185 10902.247761 10773.831766
#> REFLECTION 187 10880.366179 10751.324420
#> LO-REDUCTION 189 10874.504867 10751.324420
#> REFLECTION 191 10848.335611 10728.000065
#> LO-REDUCTION 193 10815.565359 10728.000065
#> LO-REDUCTION 195 10807.847832 10728.000065
#> EXTENSION 197 10782.821843 10689.847737
#> LO-REDUCTION 199 10778.654925 10689.847737
#> LO-REDUCTION 201 10773.831766 10689.847737
#> LO-REDUCTION 203 10763.291160 10689.847737
#> LO-REDUCTION 205 10751.324420 10689.847737
#> LO-REDUCTION 207 10746.415029 10689.847737
#> REFLECTION 209 10737.260086 10687.950253
#> REFLECTION 211 10728.000065 10683.155727
#> LO-REDUCTION 213 10720.881027 10683.155727
#> REFLECTION 215 10715.153721 10678.176674
#> REFLECTION 217 10711.924187 10677.771425
#> LO-REDUCTION 219 10702.816314 10677.771425
#> LO-REDUCTION 221 10700.833332 10677.771425
#> LO-REDUCTION 223 10693.943698 10677.771425
#> REFLECTION 225 10689.847737 10667.695390
#> LO-REDUCTION 227 10687.950253 10667.695390
#> LO-REDUCTION 229 10683.996776 10667.695390
#> EXTENSION 231 10683.155727 10660.286808
#> HI-REDUCTION 233 10678.568899 10660.286808
#> LO-REDUCTION 235 10678.176674 10660.286808
#> LO-REDUCTION 237 10677.778519 10660.286808
#> REFLECTION 239 10677.771425 10660.116619
#> LO-REDUCTION 241 10671.518869 10660.116619
#> EXTENSION 243 10670.140705 10654.024464
#> LO-REDUCTION 245 10669.955114 10654.024464
#> REFLECTION 247 10667.695390 10653.410447
#> LO-REDUCTION 249 10664.803084 10653.410447
#> EXTENSION 251 10663.099452 10644.447977
#> LO-REDUCTION 253 10662.231290 10644.447977
#> LO-REDUCTION 255 10660.286808 10644.447977
#> LO-REDUCTION 257 10660.116619 10644.447977
#> EXTENSION 259 10656.725550 10637.194156
#> LO-REDUCTION 261 10654.024464 10637.194156
#> LO-REDUCTION 263 10653.890565 10637.194156
#> LO-REDUCTION 265 10653.410447 10637.194156
#> LO-REDUCTION 267 10651.664821 10637.194156
#> LO-REDUCTION 269 10648.441063 10637.194156
#> LO-REDUCTION 271 10648.226824 10637.194156
#> LO-REDUCTION 273 10647.511960 10637.194156
#> REFLECTION 275 10644.447977 10636.991308
#> LO-REDUCTION 277 10644.315328 10636.991308
#> REFLECTION 279 10644.142298 10636.502245
#> REFLECTION 281 10641.527593 10634.534306
#> LO-REDUCTION 283 10639.177202 10634.534306
#> LO-REDUCTION 285 10639.083902 10634.534306
#> LO-REDUCTION 287 10639.017011 10634.534306
#> REFLECTION 289 10637.897839 10633.909038
#> LO-REDUCTION 291 10637.194156 10633.909038
#> LO-REDUCTION 293 10636.991308 10633.909038
#> LO-REDUCTION 295 10636.502245 10633.909038
#> LO-REDUCTION 297 10636.384966 10633.909038
#> LO-REDUCTION 299 10636.003406 10633.909038
#> LO-REDUCTION 301 10635.102824 10633.863056
#> LO-REDUCTION 303 10635.071382 10633.863056
#> REFLECTION 305 10634.734367 10633.554391
#> LO-REDUCTION 307 10634.730202 10633.554391
#> EXTENSION 309 10634.534306 10632.463033
#> LO-REDUCTION 311 10634.306774 10632.463033
#> LO-REDUCTION 313 10634.036901 10632.463033
#> LO-REDUCTION 315 10633.940853 10632.463033
#> LO-REDUCTION 317 10633.909038 10632.463033
#> EXTENSION 319 10633.863056 10631.676687
#> LO-REDUCTION 321 10633.581683 10631.676687
#> LO-REDUCTION 323 10633.554391 10631.676687
#> LO-REDUCTION 325 10633.372894 10631.676687
#> LO-REDUCTION 327 10633.096476 10631.676687
#> LO-REDUCTION 329 10633.095047 10631.676687
#> LO-REDUCTION 331 10633.008090 10631.676687
#> EXTENSION 333 10632.705129 10630.936606
#> LO-REDUCTION 335 10632.553326 10630.936606
#> LO-REDUCTION 337 10632.551100 10630.936606
#> EXTENSION 339 10632.463033 10630.323066
#> LO-REDUCTION 341 10632.318709 10630.323066
#> LO-REDUCTION 343 10631.845863 10630.323066
#> LO-REDUCTION 345 10631.810527 10630.323066
#> LO-REDUCTION 347 10631.676687 10630.323066
#> EXTENSION 349 10631.227544 10629.764518
#> LO-REDUCTION 351 10631.191103 10629.764518
#> LO-REDUCTION 353 10630.936606 10629.764518
#> LO-REDUCTION 355 10630.628129 10629.764518
#> EXTENSION 357 10630.599965 10629.261303
#> LO-REDUCTION 359 10630.541696 10629.261303
#> LO-REDUCTION 361 10630.378393 10629.261303
#> LO-REDUCTION 363 10630.323066 10629.261303
#> LO-REDUCTION 365 10630.194936 10629.261303
#> EXTENSION 367 10630.094019 10628.940512
#> LO-REDUCTION 369 10629.986547 10628.940512
#> LO-REDUCTION 371 10629.793089 10628.940512
#> LO-REDUCTION 373 10629.764518 10628.940512
#> EXTENSION 375 10629.748821 10628.374920
#> LO-REDUCTION 377 10629.670716 10628.374920
#> LO-REDUCTION 379 10629.360664 10628.374920
#> LO-REDUCTION 381 10629.327032 10628.374920
#> LO-REDUCTION 383 10629.261303 10628.374920
#> LO-REDUCTION 385 10629.219663 10628.374920
#> EXTENSION 387 10629.016933 10628.077242
#> LO-REDUCTION 389 10628.940512 10628.077242
#> LO-REDUCTION 391 10628.756769 10628.077242
#> EXTENSION 393 10628.729848 10627.808834
#> LO-REDUCTION 395 10628.586106 10627.808834
#> LO-REDUCTION 397 10628.554895 10627.808834
#> LO-REDUCTION 399 10628.446521 10627.808834
#> REFLECTION 401 10628.374920 10627.802181
#> LO-REDUCTION 403 10628.120818 10627.802181
#> HI-REDUCTION 405 10628.082864 10627.802181
#> LO-REDUCTION 407 10628.077242 10627.802181
#> REFLECTION 409 10627.968980 10627.714056
#> LO-REDUCTION 411 10627.964578 10627.714056
#> LO-REDUCTION 413 10627.916160 10627.714056
#> REFLECTION 415 10627.915811 10627.695307
#> LO-REDUCTION 417 10627.835597 10627.695307
#> LO-REDUCTION 419 10627.824625 10627.695307
#> LO-REDUCTION 421 10627.808834 10627.695307
#> LO-REDUCTION 423 10627.802181 10627.695307
#> LO-REDUCTION 425 10627.785784 10627.695307
#> REFLECTION 427 10627.766184 10627.690481
#> LO-REDUCTION 429 10627.752855 10627.690481
#> REFLECTION 431 10627.746218 10627.689459
#> EXTENSION 433 10627.730993 10627.668555
#> LO-REDUCTION 435 10627.729669 10627.668555
#> EXTENSION 437 10627.722652 10627.606860
#> LO-REDUCTION 439 10627.714056 10627.606860
#> LO-REDUCTION 441 10627.707588 10627.606860
#> LO-REDUCTION 443 10627.695307 10627.606860
#> LO-REDUCTION 445 10627.690481 10627.606860
#> LO-REDUCTION 447 10627.689459 10627.606860
#> LO-REDUCTION 449 10627.684827 10627.606860
#> LO-REDUCTION 451 10627.668555 10627.606860
#> LO-REDUCTION 453 10627.650355 10627.606860
#> LO-REDUCTION 455 10627.649087 10627.606860
#> REFLECTION 457 10627.648278 10627.598382
#> EXTENSION 459 10627.639806 10627.546402
#> LO-REDUCTION 461 10627.633180 10627.546402
#> LO-REDUCTION 463 10627.622030 10627.546402
#> EXTENSION 465 10627.615643 10627.517784
#> LO-REDUCTION 467 10627.609777 10627.517784
#> LO-REDUCTION 469 10627.609287 10627.517784
#> LO-REDUCTION 471 10627.606860 10627.517784
#> EXTENSION 473 10627.598382 10627.505271
#> EXTENSION 475 10627.575663 10627.445320
#> LO-REDUCTION 477 10627.561964 10627.445320
#> LO-REDUCTION 479 10627.553455 10627.445320
#> LO-REDUCTION 481 10627.546402 10627.445320
#> REFLECTION 483 10627.545679 10627.439659
#> LO-REDUCTION 485 10627.518663 10627.439659
#> EXTENSION 487 10627.517784 10627.410904
#> LO-REDUCTION 489 10627.505271 10627.410904
#> LO-REDUCTION 491 10627.460400 10627.410904
#> LO-REDUCTION 493 10627.457991 10627.410904
#> LO-REDUCTION 495 10627.455565 10627.410904
#> LO-REDUCTION 497 10627.446902 10627.410904
#> LO-REDUCTION 499 10627.445320 10627.410904
#> REFLECTION 501 10627.439659 10627.410696
#> LO-REDUCTION 503 10627.428972 10627.410696
#> REFLECTION 505 10627.423307 10627.404253
#> REFLECTION 507 10627.419460 10627.402298
#> LO-REDUCTION 509 10627.418025 10627.402298
#> HI-REDUCTION 511 10627.413552 10627.402298
#> REFLECTION 513 10627.412535 10627.401685
#> LO-REDUCTION 515 10627.412192 10627.401125
#> REFLECTION 517 10627.410904 10627.399249
#> REFLECTION 519 10627.410696 10627.399140
#> LO-REDUCTION 521 10627.406126 10627.399140
#> HI-REDUCTION 523 10627.404253 10627.399140
#> LO-REDUCTION 525 10627.403722 10627.398511
#> REFLECTION 527 10627.402298 10627.395709
#> LO-REDUCTION 529 10627.401685 10627.395709
#> LO-REDUCTION 531 10627.401125 10627.395709
#> EXTENSION 533 10627.400552 10627.392989
#> LO-REDUCTION 535 10627.399609 10627.392989
#> LO-REDUCTION 537 10627.399249 10627.392989
#> HI-REDUCTION 539 10627.399140 10627.392989
#> LO-REDUCTION 541 10627.398511 10627.392989
#> REFLECTION 543 10627.396414 10627.391983
#> LO-REDUCTION 545 10627.395934 10627.391983
#> LO-REDUCTION 547 10627.395709 10627.391983
#> REFLECTION 549 10627.395233 10627.391410
#> REFLECTION 551 10627.393935 10627.390689
#> LO-REDUCTION 553 10627.393316 10627.390689
#> HI-REDUCTION 555 10627.393288 10627.390689
#> LO-REDUCTION 557 10627.393284 10627.390689
#> EXTENSION 559 10627.392989 10627.388266
#> LO-REDUCTION 561 10627.392976 10627.388266
#> LO-REDUCTION 563 10627.391983 10627.388266
#> LO-REDUCTION 565 10627.391640 10627.388266
#> LO-REDUCTION 567 10627.391410 10627.388266
#> LO-REDUCTION 569 10627.390901 10627.388266
#> EXTENSION 571 10627.390818 10627.385684
#> LO-REDUCTION 573 10627.390689 10627.385684
#> LO-REDUCTION 575 10627.390471 10627.385684
#> LO-REDUCTION 577 10627.389393 10627.385684
#> EXTENSION 579 10627.389168 10627.382827
#> LO-REDUCTION 581 10627.388941 10627.382827
#> LO-REDUCTION 583 10627.388717 10627.382827
#> LO-REDUCTION 585 10627.388266 10627.382827
#> REFLECTION 587 10627.386756 10627.382311
#> EXTENSION 589 10627.386062 10627.380832
#> LO-REDUCTION 591 10627.385881 10627.380832
#> EXTENSION 593 10627.385684 10627.376148
#> LO-REDUCTION 595 10627.384892 10627.376148
#> LO-REDUCTION 597 10627.383391 10627.376148
#> LO-REDUCTION 599 10627.383251 10627.376148
#> LO-REDUCTION 601 10627.382827 10627.376148
#> LO-REDUCTION 603 10627.382311 10627.376148
#> EXTENSION 605 10627.381803 10627.372125
#> LO-REDUCTION 607 10627.380832 10627.372125
#> EXTENSION 609 10627.379810 10627.368896
#> LO-REDUCTION 611 10627.377858 10627.368896
#> LO-REDUCTION 613 10627.377814 10627.368896
#> LO-REDUCTION 615 10627.377429 10627.368896
#> EXTENSION 617 10627.376836 10627.367220
#> EXTENSION 619 10627.376148 10627.359907
#> LO-REDUCTION 621 10627.373550 10627.359907
#> LO-REDUCTION 623 10627.372125 10627.359907
#> LO-REDUCTION 625 10627.371566 10627.359907
#> LO-REDUCTION 627 10627.370096 10627.359907
#> LO-REDUCTION 629 10627.370093 10627.359907
#> LO-REDUCTION 631 10627.368896 10627.359907
#> LO-REDUCTION 633 10627.367220 10627.359907
#> REFLECTION 635 10627.365603 10627.358847
#> REFLECTION 637 10627.363033 10627.358078
#> LO-REDUCTION 639 10627.362756 10627.358078
#> REFLECTION 641 10627.362158 10627.357725
#> EXTENSION 643 10627.361979 10627.354815
#> LO-REDUCTION 645 10627.361206 10627.354815
#> EXTENSION 647 10627.360150 10627.351066
#> LO-REDUCTION 649 10627.359907 10627.351066
#> LO-REDUCTION 651 10627.358847 10627.351066
#> LO-REDUCTION 653 10627.358437 10627.351066
#> LO-REDUCTION 655 10627.358078 10627.351066
#> EXTENSION 657 10627.357725 10627.346354
#> LO-REDUCTION 659 10627.355918 10627.346354
#> LO-REDUCTION 661 10627.355329 10627.346354
#> EXTENSION 663 10627.354815 10627.344191
#> LO-REDUCTION 665 10627.354583 10627.344191
#> EXTENSION 667 10627.353059 10627.341950
#> EXTENSION 669 10627.351480 10627.339530
#> LO-REDUCTION 671 10627.351066 10627.339530
#> LO-REDUCTION 673 10627.349584 10627.339530
#> REFLECTION 675 10627.348064 10627.338448
#> REFLECTION 677 10627.347092 10627.337467
#> LO-REDUCTION 679 10627.346354 10627.337467
#> REFLECTION 681 10627.344191 10627.337053
#> LO-REDUCTION 683 10627.341950 10627.337053
#> LO-REDUCTION 685 10627.340872 10627.337053
#> EXTENSION 687 10627.339663 10627.335305
#> LO-REDUCTION 689 10627.339530 10627.335305
#> LO-REDUCTION 691 10627.339514 10627.335305
#> LO-REDUCTION 693 10627.338448 10627.335305
#> LO-REDUCTION 695 10627.337467 10627.335305
#> LO-REDUCTION 697 10627.337363 10627.335305
#> HI-REDUCTION 699 10627.337178 10627.335305
#> LO-REDUCTION 701 10627.337173 10627.335305
#> LO-REDUCTION 703 10627.337053 10627.335305
#> LO-REDUCTION 705 10627.336694 10627.335305
#> LO-REDUCTION 707 10627.336463 10627.335246
#> REFLECTION 709 10627.336117 10627.334766
#> LO-REDUCTION 711 10627.335746 10627.334766
#> LO-REDUCTION 713 10627.335718 10627.334766
#> LO-REDUCTION 715 10627.335416 10627.334766
#> EXTENSION 717 10627.335399 10627.334454
#> LO-REDUCTION 719 10627.335376 10627.334454
#> HI-REDUCTION 721 10627.335354 10627.334454
#> EXTENSION 723 10627.335305 10627.334011
#> LO-REDUCTION 725 10627.335246 10627.334011
#> REFLECTION 727 10627.334980 10627.334010
#> EXTENSION 729 10627.334909 10627.333815
#> EXTENSION 731 10627.334812 10627.333557
#> REFLECTION 733 10627.334766 10627.333464
#> REFLECTION 735 10627.334695 10627.333453
#> LO-REDUCTION 737 10627.334454 10627.333453
#> LO-REDUCTION 739 10627.334357 10627.333401
#> EXTENSION 741 10627.334011 10627.332599
#> LO-REDUCTION 743 10627.334010 10627.332599
#> LO-REDUCTION 745 10627.333815 10627.332599
#> EXTENSION 747 10627.333580 10627.332370
#> LO-REDUCTION 749 10627.333557 10627.332370
#> LO-REDUCTION 751 10627.333464 10627.332370
#> LO-REDUCTION 753 10627.333453 10627.332370
#> LO-REDUCTION 755 10627.333401 10627.332370
#> REFLECTION 757 10627.333365 10627.332208
#> REFLECTION 759 10627.333009 10627.331942
#> EXTENSION 761 10627.332662 10627.331485
#> LO-REDUCTION 763 10627.332599 10627.331485
#> EXTENSION 765 10627.332535 10627.330805
#> LO-REDUCTION 767 10627.332457 10627.330805
#> LO-REDUCTION 769 10627.332412 10627.330805
#> LO-REDUCTION 771 10627.332370 10627.330805
#> EXTENSION 773 10627.332208 10627.330512
#> EXTENSION 775 10627.331942 10627.330315
#> REFLECTION 777 10627.331697 10627.330146
#> EXTENSION 779 10627.331503 10627.328625
#> LO-REDUCTION 781 10627.331485 10627.328625
#> EXTENSION 783 10627.331034 10627.326730
#> LO-REDUCTION 785 10627.330839 10627.326730
#> LO-REDUCTION 787 10627.330805 10627.326730
#> LO-REDUCTION 789 10627.330512 10627.326730
#> LO-REDUCTION 791 10627.330315 10627.326730
#> LO-REDUCTION 793 10627.330146 10627.326730
#> EXTENSION 795 10627.329446 10627.324630
#> LO-REDUCTION 797 10627.328625 10627.324630
#> LO-REDUCTION 799 10627.328236 10627.324630
#> LO-REDUCTION 801 10627.328118 10627.324630
#> EXTENSION 803 10627.327980 10627.322469
#> LO-REDUCTION 805 10627.327401 10627.322469
#> LO-REDUCTION 807 10627.326810 10627.322469
#> LO-REDUCTION 809 10627.326730 10627.322469
#> EXTENSION 811 10627.325512 10627.321607
#> EXTENSION 813 10627.325248 10627.319269
#> LO-REDUCTION 815 10627.325220 10627.319269
#> LO-REDUCTION 817 10627.324630 10627.319269
#> EXTENSION 819 10627.322822 10627.317764
#> LO-REDUCTION 821 10627.322747 10627.317764
#> LO-REDUCTION 823 10627.322541 10627.317764
#> LO-REDUCTION 825 10627.322469 10627.317764
#> LO-REDUCTION 827 10627.321607 10627.317764
#> REFLECTION 829 10627.321336 10627.317229
#> EXTENSION 831 10627.319403 10627.315931
#> LO-REDUCTION 833 10627.319269 10627.315931
#> HI-REDUCTION 835 10627.319217 10627.315931
#> EXTENSION 837 10627.318902 10627.313930
#> LO-REDUCTION 839 10627.318264 10627.313930
#> LO-REDUCTION 841 10627.317916 10627.313930
#> LO-REDUCTION 843 10627.317764 10627.313930
#> LO-REDUCTION 845 10627.317466 10627.313930
#> LO-REDUCTION 847 10627.317229 10627.313930
#> LO-REDUCTION 849 10627.316993 10627.313930
#> EXTENSION 851 10627.315931 10627.312988
#> LO-REDUCTION 853 10627.315200 10627.312988
#> EXTENSION 855 10627.315066 10627.311820
#> LO-REDUCTION 857 10627.315001 10627.311820
#> LO-REDUCTION 859 10627.314979 10627.311820
#> LO-REDUCTION 861 10627.314928 10627.311820
#> REFLECTION 863 10627.314415 10627.311253
#> EXTENSION 865 10627.313930 10627.308654
#> LO-REDUCTION 867 10627.313748 10627.308654
#> LO-REDUCTION 869 10627.312988 10627.308654
#> LO-REDUCTION 871 10627.312765 10627.308654
#> EXTENSION 873 10627.312247 10627.306988
#> LO-REDUCTION 875 10627.311849 10627.306988
#> LO-REDUCTION 877 10627.311820 10627.306988
#> LO-REDUCTION 879 10627.311253 10627.306988
#> EXTENSION 881 10627.311163 10627.306650
#> EXTENSION 883 10627.310029 10627.303816
#> LO-REDUCTION 885 10627.309940 10627.303816
#> LO-REDUCTION 887 10627.308654 10627.303816
#> LO-REDUCTION 889 10627.307925 10627.303816
#> LO-REDUCTION 891 10627.307508 10627.303816
#> LO-REDUCTION 893 10627.307213 10627.303816
#> LO-REDUCTION 895 10627.306988 10627.303816
#> LO-REDUCTION 897 10627.306650 10627.303816
#> EXTENSION 899 10627.306398 10627.302838
#> EXTENSION 901 10627.305260 10627.302399
#> EXTENSION 903 10627.304944 10627.301617
#> EXTENSION 905 10627.304918 10627.300176
#> LO-REDUCTION 907 10627.304681 10627.300176
#> LO-REDUCTION 909 10627.304629 10627.300176
#> LO-REDUCTION 911 10627.304257 10627.300176
#> LO-REDUCTION 913 10627.303816 10627.300176
#> LO-REDUCTION 915 10627.302838 10627.300176
#> LO-REDUCTION 917 10627.302399 10627.300176
#> LO-REDUCTION 919 10627.301901 10627.300176
#> REFLECTION 921 10627.301617 10627.300045
#> REFLECTION 923 10627.300791 10627.299395
#> EXTENSION 925 10627.300638 10627.299154
#> EXTENSION 927 10627.300468 10627.298714
#> EXTENSION 929 10627.300411 10627.298328
#> LO-REDUCTION 931 10627.300385 10627.298328
#> EXTENSION 933 10627.300323 10627.297052
#> LO-REDUCTION 935 10627.300176 10627.297052
#> EXTENSION 937 10627.300045 10627.294937
#> LO-REDUCTION 939 10627.299395 10627.294937
#> LO-REDUCTION 941 10627.299154 10627.294937
#> LO-REDUCTION 943 10627.298714 10627.294937
#> EXTENSION 945 10627.298705 10627.293423
#> EXTENSION 947 10627.298328 10627.291961
#> EXTENSION 949 10627.297271 10627.290610
#> EXTENSION 951 10627.297052 10627.286569
#> LO-REDUCTION 953 10627.295764 10627.286569
#> LO-REDUCTION 955 10627.295544 10627.286569
#> LO-REDUCTION 957 10627.295383 10627.286569
#> EXTENSION 959 10627.294937 10627.284935
#> REFLECTION 961 10627.293423 10627.283913
#> EXTENSION 963 10627.291961 10627.275925
#> LO-REDUCTION 965 10627.290610 10627.275925
#> LO-REDUCTION 967 10627.288413 10627.275925
#> LO-REDUCTION 969 10627.287854 10627.275925
#> EXTENSION 971 10627.286822 10627.270579
#> LO-REDUCTION 973 10627.286569 10627.270579
#> LO-REDUCTION 975 10627.284935 10627.270579
#> EXTENSION 977 10627.283913 10627.266499
#> EXTENSION 979 10627.280871 10627.261222
#> EXTENSION 981 10627.278905 10627.254687
#> LO-REDUCTION 983 10627.276641 10627.254687
#> LO-REDUCTION 985 10627.276111 10627.254687
#> LO-REDUCTION 987 10627.275925 10627.254687
#> EXTENSION 989 10627.274312 10627.248777
#> LO-REDUCTION 991 10627.270579 10627.248777
#> EXTENSION 993 10627.266499 10627.239120
#> LO-REDUCTION 995 10627.262812 10627.239120
#> EXTENSION 997 10627.261222 10627.232039
#> LO-REDUCTION 999 10627.255470 10627.232039
#> LO-REDUCTION 1001 10627.255433 10627.232039
#> LO-REDUCTION 1003 10627.254687 10627.232039
#> LO-REDUCTION 1005 10627.252724 10627.232039
#> LO-REDUCTION 1007 10627.249429 10627.232039
#> EXTENSION 1009 10627.248777 10627.226174
#> EXTENSION 1011 10627.240173 10627.222003
#> EXTENSION 1013 10627.239155 10627.217054
#> LO-REDUCTION 1015 10627.239120 10627.217054
#> LO-REDUCTION 1017 10627.238006 10627.217054
#> EXTENSION 1019 10627.235574 10627.210352
#> LO-REDUCTION 1021 10627.234465 10627.210352
#> LO-REDUCTION 1023 10627.232039 10627.210352
#> LO-REDUCTION 1025 10627.226174 10627.210352
#> LO-REDUCTION 1027 10627.224201 10627.210352
#> LO-REDUCTION 1029 10627.222003 10627.210352
#> LO-REDUCTION 1031 10627.220416 10627.210352
#> LO-REDUCTION 1033 10627.218157 10627.210352
#> EXTENSION 1035 10627.217054 10627.207828
#> LO-REDUCTION 1037 10627.214506 10627.207828
#> EXTENSION 1039 10627.213703 10627.203439
#> LO-REDUCTION 1041 10627.212896 10627.203439
#> LO-REDUCTION 1043 10627.212268 10627.203439
#> LO-REDUCTION 1045 10627.211161 10627.203439
#> LO-REDUCTION 1047 10627.210580 10627.203439
#> LO-REDUCTION 1049 10627.210352 10627.203439
#> REFLECTION 1051 10627.209093 10627.203206
#> LO-REDUCTION 1053 10627.207828 10627.203206
#> LO-REDUCTION 1055 10627.207380 10627.203206
#> EXTENSION 1057 10627.206098 10627.200958
#> LO-REDUCTION 1059 10627.205913 10627.200958
#> EXTENSION 1061 10627.205291 10627.197698
#> LO-REDUCTION 1063 10627.204766 10627.197698
#> LO-REDUCTION 1065 10627.204707 10627.197698
#> LO-REDUCTION 1067 10627.203603 10627.197698
#> LO-REDUCTION 1069 10627.203439 10627.197698
#> LO-REDUCTION 1071 10627.203206 10627.197698
#> EXTENSION 1073 10627.201828 10627.197264
#> EXTENSION 1075 10627.201743 10627.194831
#> LO-REDUCTION 1077 10627.201033 10627.194831
#> LO-REDUCTION 1079 10627.200958 10627.194831
#> REFLECTION 1081 10627.199721 10627.194540
#> EXTENSION 1083 10627.199665 10627.189501
#> LO-REDUCTION 1085 10627.198372 10627.189501
#> LO-REDUCTION 1087 10627.197698 10627.189501
#> LO-REDUCTION 1089 10627.197264 10627.189501
#> LO-REDUCTION 1091 10627.196167 10627.189501
#> LO-REDUCTION 1093 10627.195161 10627.189501
#> LO-REDUCTION 1095 10627.194831 10627.189501
#> EXTENSION 1097 10627.194540 10627.187810
#> EXTENSION 1099 10627.193176 10627.185764
#> LO-REDUCTION 1101 10627.192385 10627.185764
#> EXTENSION 1103 10627.191780 10627.183839
#> LO-REDUCTION 1105 10627.191764 10627.183839
#> EXTENSION 1107 10627.191712 10627.180294
#> LO-REDUCTION 1109 10627.189708 10627.180294
#> LO-REDUCTION 1111 10627.189501 10627.180294
#> LO-REDUCTION 1113 10627.187810 10627.180294
#> LO-REDUCTION 1115 10627.187378 10627.180294
#> REFLECTION 1117 10627.185806 10627.179463
#> LO-REDUCTION 1119 10627.185764 10627.179463
#> LO-REDUCTION 1121 10627.183839 10627.179463
#> LO-REDUCTION 1123 10627.183223 10627.179463
#> REFLECTION 1125 10627.182806 10627.179123
#> EXTENSION 1127 10627.180855 10627.176981
#> LO-REDUCTION 1129 10627.180691 10627.176981
#> LO-REDUCTION 1131 10627.180673 10627.176981
#> LO-REDUCTION 1133 10627.180554 10627.176981
#> LO-REDUCTION 1135 10627.180484 10627.176981
#> REFLECTION 1137 10627.180294 10627.176882
#> LO-REDUCTION 1139 10627.179463 10627.176882
#> LO-REDUCTION 1141 10627.179123 10627.176882
#> REFLECTION 1143 10627.178788 10627.176405
#> LO-REDUCTION 1145 10627.178294 10627.176405
#> REFLECTION 1147 10627.178071 10627.176354
#> LO-REDUCTION 1149 10627.177274 10627.176354
#> LO-REDUCTION 1151 10627.177200 10627.176354
#> EXTENSION 1153 10627.177182 10627.176124
#> LO-REDUCTION 1155 10627.176981 10627.176124
#> REFLECTION 1157 10627.176882 10627.176087
#> LO-REDUCTION 1159 10627.176791 10627.176087
#> LO-REDUCTION 1161 10627.176645 10627.176087
#> LO-REDUCTION 1163 10627.176632 10627.176087
#> REFLECTION 1165 10627.176499 10627.176051
#> LO-REDUCTION 1167 10627.176405 10627.176029
#> Exiting from Nelder Mead minimizer
#> 1169 function evaluations used
#> Post processing for method Nelder-Mead
#> Successful convergence!
#> Compute Hessian approximation at finish of Nelder-Mead
#> Compute gradient approximation at finish of Nelder-Mead
#> Save results from method Nelder-Mead
#> $par
#> (Intercept) P pi1 pi2 theta5 theta6
#> 3.323506 -1.045803 3.765180 8.535425 -1.446987 1.127709
#> theta7 theta8
#> 1.575367 13.750670
#>
#> $value
#> [1] 10627.18
#>
#> $message
#> NULL
#>
#> $convcode
#> [1] 0
#>
#> $fevals
#> function
#> 1169
#>
#> $gevals
#> gradient
#> NA
#>
#> $nitns
#> [1] NA
#>
#> $kkt1
#> [1] TRUE
#>
#> $kkt2
#> [1] TRUE
#>
#> $xtimes
#> user.self
#> 1.137
#>
#> Assemble the answers
# use method L-BFGS-B instead of Nelder-Mead and print report every 50 iterations
l4 <- latentIV(y ~ P, optimx.args = list(method = "L-BFGS-B", control=list(trace = 2, REPORT=50)),
data = dataLatentIV)
#> No start parameters were given. The linear model y ~ P is fitted to derive them.
#> The start parameters c((Intercept)=2.628, P=-0.955, pi1=7.627, pi2=11.784, theta5=0.5, theta6=1, theta7=0.5, theta8=1) are used for optimization.
#> fn is fn1
#> Looking for method = L-BFGS-B
#> Methods to be used:[1] "L-BFGS-B"
#> Function has 8 arguments
#> Analytic gradient not made available.
#> Analytic Hessian not made available.
#> Scale check -- log parameter ratio= 1.372334 log bounds ratio= NA
#> optcfg:$fname
#> [1] "fn1"
#>
#> $npar
#> [1] 8
#>
#> $ctrl
#> $ctrl$follow.on
#> [1] FALSE
#>
#> $ctrl$save.failures
#> [1] TRUE
#>
#> $ctrl$trace
#> [1] 2
#>
#> $ctrl$kkt
#> [1] TRUE
#>
#> $ctrl$all.methods
#> [1] FALSE
#>
#> $ctrl$starttests
#> [1] TRUE
#>
#> $ctrl$maximize
#> [1] FALSE
#>
#> $ctrl$dowarn
#> [1] TRUE
#>
#> $ctrl$usenumDeriv
#> [1] FALSE
#>
#> $ctrl$kkttol
#> [1] 0.001
#>
#> $ctrl$kkt2tol
#> [1] 1e-06
#>
#> $ctrl$badval
#> [1] 8.988466e+307
#>
#> $ctrl$scaletol
#> [1] 3
#>
#> $ctrl$REPORT
#> [1] 50
#>
#> $ctrl$have.bounds
#> [1] FALSE
#>
#>
#> $usenumDeriv
#> [1] FALSE
#>
#> $ufn
#> function (par)
#> fn(par, ...)
#> <bytecode: 0x55627696cd18>
#> <environment: 0x55626f815a10>
#>
#> $have.bounds
#> [1] FALSE
#>
#> $method
#> [1] "L-BFGS-B"
#>
#> Method: L-BFGS-B
#> N = 8, M = 5 machine precision = 2.22045e-16
#> This problem is unconstrained.
#>
#> iterations 82
#> function evaluations 105
#> segments explored during Cauchy searches 1
#> BFGS updates skipped 0
#> active bounds at final generalized Cauchy point 0
#> norm of the final projected gradient 0.674195
#> final function value 10626.7
#>
#> final value 10626.728535
#> converged
#> Post processing for method L-BFGS-B
#> Successful convergence!
#> Compute Hessian approximation at finish of L-BFGS-B
#> Compute gradient approximation at finish of L-BFGS-B
#> Save results from method L-BFGS-B
#> $par
#> (Intercept) P pi1 pi2 theta5 theta6
#> 2.9033679 -0.9907247 2.9159477 8.2506605 -2.0212655 1.0050909
#> theta7 theta8
#> 0.6272300 14.3305519
#>
#> $value
#> [1] 10626.73
#>
#> $message
#> [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
#>
#> $convcode
#> [1] 0
#>
#> $fevals
#> function
#> 105
#>
#> $gevals
#> gradient
#> 105
#>
#> $nitns
#> [1] NA
#>
#> $kkt1
#> [1] TRUE
#>
#> $kkt2
#> [1] FALSE
#>
#> $xtimes
#> user.self
#> 1.728
#>
#> Assemble the answers
# read out all coefficients, incl auxiliary coefs
lat.all.coefs <- coef(l4)
# same as above
lat.all.coefs <- coef(l4, complete = TRUE)
# only main model coefs
lat.main.coefs <- coef(l4, complete = FALSE)
# }